Learning by Transferring from Unsupervised Universal Sources
نویسندگان
چکیده
Category classifiers trained from a large corpus of annotated data are widely accepted as the sources for (hypothesis) transfer learning. Sources generated in this way are tied to a particular set of categories, limiting their transferability across a wide spectrum of target categories. In this paper, we address this largelyoverlooked yet fundamental source problem by both introducing a systematic scheme for generating universal source hypotheses and proposing a principled, scalable approach to automatically tuning the transfer process. Our approach is based on the insights that expressive source hypotheses could be generated without any supervision and that a sparse combination of such hypotheses facilitates recognition of novel categories from few samples. We demonstrate improvements over the state-of-the-art on object and scene classification in the small sample size regime.
منابع مشابه
Unsupervised Dependency Parsing with Transferring Distribution via Parallel Guidance and Entropy Regularization
We present a novel approach for inducing unsupervised dependency parsers for languages that have no labeled training data, but have translated text in a resourcerich language. We train probabilistic parsing models for resource-poor languages by transferring cross-lingual knowledge from resource-rich language with entropy regularization. Our method can be used as a purely monolingual dependency ...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملDeep Understanding of Financial Knowledge through Unsupervised Learning
In this project, a universal information extraction method was implemented and applied to financial area, which supports aggregation and self analysis of complex information from massive correlated sources. In order to extract domain-independent relations between entities, open information extraction algorithm is used. Firstly, we actively label dataset using unsupervised learning algorithm by ...
متن کاملMultilayer bootstrap network for unsupervised speaker recognition
We apply multilayer bootstrap network (MBN), a recent proposed unsupervised learning method, to unsupervised speaker recognition. The proposed method first extracts supervectors from an unsupervised universal background model, then reduces the dimension of the high-dimensional supervectors by multilayer bootstrap network, and finally conducts unsupervised speaker recognition by clustering the l...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016